1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
// Copyright 2018 Stefan Kroboth // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or // http://opensource.org/licenses/MIT>, at your option. This file may not be // copied, modified, or distributed except according to those terms. //! # Shepp-Logan phantom //! //! Have you ever had the need to create hundreds to thousands of Shepp-Logan phantoms per second? //! Well if you do, you're doing something wrong, but you've come to the right place. //! The Shepp-Logan phantom is a numerical phantom which is defined as the sum of 10 ellipses. It //! is often used as a test image for image reconstruction algorithms. //! This crate provides a dependency-free, efficient implementation for creating Shepp-Logan //! phantoms in 2D. //! The following results were obtained with `cargo bench` on an Intel Core i7 with 2.70GHz: //! //! Resolution | time | fps //! -----------|-------------|------ //! 128x128 | 111,000ns | 9000 //! 256x256 | 440,000ns | 2200 //! 512x512 | 1,780,000ns | 560 //! //! Two versions are provided: The original version as described in [0] and a modified version, //! which has higher contrast as described in [1]. If you do not know the difference between those //! two, you most likely want the modified version. //! //! To use the crate, add `shepplogan` to your `Cargo.toml`: //! //! ```toml //! shepplogan = "^1" //! ``` //! //! # Example //! //! ```rust //! extern crate shepplogan; //! use shepplogan::{shepplogan, shepplogan_modified}; //! //! // Dimensions of the image grid //! let (nx, ny) = (256, 320); //! //! // Original Shepp-Logan Phantom (the dynamic range is between 0.0 and 2.0) //! let phantom = shepplogan(nx, ny); //! //! // Modified Shepp-Logan Phantom (the dynamic range is between 0.0 and 1.0) //! let phantom_modified = shepplogan_modified(nx, ny); //! ``` //! //! See `examples/example.rs` for an example which saves the phantom to disk. //! //! You can also create your own phantom by defining ellipses: //! //! ```rust //! extern crate shepplogan; //! use shepplogan::{phantom, Ellipse}; //! //! // Dimensions of the image grid //! let (nx, ny) = (256, 320); //! //! // Define two ellipses //! let ellipses = //! [ //! Ellipse::new(0.0, -0.0184, 0.6624, 0.874, 0.0, -0.98), //! Ellipse::new(0.0, 0.0, 0.69, 0.92, 0.0, 2.0), //! ]; //! //! let ph = phantom(&ellipses, nx, ny); //! ``` //! //! This will create a phantom consisting of two ellipses. //! //! # References //! //! [0] Shepp, LA and Logan BF, "The Fourier reconstruction of a head section." IEEE Transactions //! on Nuclear Science 21, No. 3 (1974) //! //! [1] Toft, PA, "The Radon Transform - Theory and Implementation", PhD dissertation, Departement //! of Mathematical Modelling, Technical University of Denmark (1996) #![warn(missing_docs)] #[cfg(feature = "parallel")] extern crate rayon; mod ellipse; pub use crate::ellipse::Ellipse; #[cfg(feature = "parallel")] use rayon::prelude::*; #[cfg(feature = "parallel")] use std::sync::Mutex; macro_rules! parts { () => { [ Ellipse::new(0.0, 0.35, 0.21, 0.25, 0.0, 0.01), Ellipse::new(0.0, 0.1, 0.046, 0.046, 0.0, 0.01), Ellipse::new(0.0, -0.1, 0.046, 0.046, 0.0, 0.01), Ellipse::new(-0.08, -0.605, 0.046, 0.023, 0.0, 0.01), Ellipse::new(0.0, -0.605, 0.023, 0.023, 0.0, 0.01), Ellipse::new(0.06, -0.605, 0.023, 0.046, 0.0, 0.01), Ellipse::new(0.22, 0.0, 0.11, 0.31, -18.0, -0.02), Ellipse::new(-0.22, 0.0, 0.16, 0.41, 18.0, -0.02), Ellipse::new(0.0, -0.0184, 0.6624, 0.874, 0.0, -0.98), Ellipse::new(0.0, 0.0, 0.69, 0.92, 0.0, 2.0), ] }; } macro_rules! parts_modified { () => { [ Ellipse::new(0.0, 0.35, 0.21, 0.25, 0.0, 0.1), Ellipse::new(0.0, 0.1, 0.046, 0.046, 0.0, 0.1), Ellipse::new(0.0, -0.1, 0.046, 0.046, 0.0, 0.1), Ellipse::new(-0.08, -0.605, 0.046, 0.023, 0.0, 0.1), Ellipse::new(0.0, -0.605, 0.023, 0.023, 0.0, 0.1), Ellipse::new(0.06, -0.605, 0.023, 0.046, 0.0, 0.1), Ellipse::new(0.22, 0.0, 0.11, 0.31, -18.0, -0.2), Ellipse::new(-0.22, 0.0, 0.16, 0.41, 18.0, -0.2), Ellipse::new(0.0, -0.0184, 0.6624, 0.874, 0.0, -0.8), Ellipse::new(0.0, 0.0, 0.69, 0.92, 0.0, 1.0), ] }; } /// Original Shepp-Logan phantom /// /// Constructs the original Shepp-Logan phantom as described in: /// /// Shepp, LA and Logan BF, "The Fourier reconstruction of a head section." IEEE Transactions on /// Nuclear Science 21, No. 3 (1974) /// /// The parameters `nx` and `ny` define the number of pixels in `x` and `y` direction. /// The dynamic range of the values is between `0.0` and `2.0`. pub fn shepplogan(nx: usize, ny: usize) -> Vec<f64> { let ellipses = parts!(); phantom(&ellipses, nx, ny) } /// Modified Shepp-Logan phantom with better contrast /// /// Constructs the modified Shepp-Logan phantom as described in: /// /// Toft, PA, "The Radon Transform - Theory and Implementation", PhD dissertation, Departement of /// Mathematical Modelling, Technical University of Denmark (1996) /// /// The parameters `nx` and `ny` define the number of pixels in `x` and `y` direction. /// The dynamic range of the values is between `0.0` and `1.0`. pub fn shepplogan_modified(nx: usize, ny: usize) -> Vec<f64> { let ellipses = parts_modified!(); phantom(&ellipses, nx, ny) } #[cfg(not(feature = "parallel"))] #[cfg(not(feature = "slow_impl"))] /// Creates a phantom based on given ellipses /// /// Besides `nx` and `ny`, which define the number of pixels in `x` and `y` direction, this /// function also requires a vector of Ellipses. pub fn phantom(ellipses: &[Ellipse], nx: usize, ny: usize) -> Vec<f64> { let mut arr = vec![0.0; nx * ny]; let nx2 = (nx as f64) / 2.0; let ny2 = (ny as f64) / 2.0; let nmin = (std::cmp::min(nx, ny) as f64) / 2.0; for e in ellipses.iter() { let bbox = e.bounding_box(nx, ny); for x in bbox.0..bbox.2 { let xi = (x as f64 - nx2) / nmin; for y in bbox.1..bbox.3 { let yi = (y as f64 - ny2) / nmin; if e.inside(xi, yi) { arr[(ny - y) * nx + x] += e.intensity(); } } } } arr } #[cfg(feature = "parallel")] /// Creates a phantom based on given ellipses /// /// Besides `nx` and `ny`, which define the number of pixels in `x` and `y` direction, this /// function also requires a vector of Ellipses. pub fn phantom(ellipses: &[Ellipse], nx: usize, ny: usize) -> Vec<f64> { let arr: Vec<Mutex<f64>> = (0..(nx * ny)) .into_par_iter() .map(|_| Mutex::new(0.0)) .collect(); let nx2 = (nx as f64) / 2.0; let ny2 = (ny as f64) / 2.0; let nmin = (std::cmp::min(nx, ny) as f64) / 2.0; ellipses.into_par_iter().for_each(|e| { let bbox = e.bounding_box(nx, ny); (bbox.0..bbox.2).into_iter().for_each(|x| { let xi = (x as f64 - nx2) / nmin; (bbox.1..bbox.3).into_iter().for_each(|y| { let yi = (y as f64 - ny2) / nmin; if e.inside(xi, yi) { let mut b = arr[(ny - y) * nx + x].lock().unwrap(); *b = *b + e.intensity(); } }) }); }); arr.into_par_iter().map(|x| *(x.lock().unwrap())).collect() } #[cfg(feature = "slow_impl")] /// Creates a phantom based on given ellipses /// /// Besides `nx` and `ny`, which define the number of pixels in `x` and `y` direction, this /// function also requires a vector of Ellipses. pub fn phantom(ellipses: &[Ellipse], nx: usize, ny: usize) -> Vec<f64> { let mut arr = Vec::with_capacity(nx * ny); let nx2 = (nx as f64) / 2.0; let ny2 = (ny as f64) / 2.0; let nmin = (std::cmp::min(nx, ny) as f64) / 2.0; for y in 0..ny { for x in 0..nx { let xi = (x as f64 - nx2) / nmin; let yi = ((ny - y) as f64 - ny2) / nmin; arr.push( ellipses .iter() .filter(|e| e.inside(xi, yi)) .map(|e| e.intensity()) .sum(), ); } } arr }